Supplemental Figure S1: Urinary vesicle enrichment, fractionation and vesicle marker detection. Panel A: workflow to isolate and fractionate urinary vesicles by hydrostatic filtration dialysis followed by differential centrifugation. Urine SN2000 g (1.25 litres) was poured in 1 l separating funnel, after concentration 200 ml of milliQ water was added to flush away all the analytes smaller than the MWCO. HFDa was ready for the differential centrifugation in approximately 24 hours meanwhile the differential centrifugation protocol required nearly half working day. Panel B: Coomassie gel of all vesicles fractions isolated following the workflow (numbered in red). Panel C and D: immunodetection of TSG101 and CD63 (R & D System Antibody). Ten µg of protein (Bradford assay) was loaded per lane. Lane 1 HFDa; Lane 2 HFDa-P40; Lane 3 HFDa-P200, Lane 4 HFDa-SN200. St Molecular weight standard expressed in kDa Supplemental Figure S2. Isolated RNA profiles of triplicate extraction using Norgen isolation Kit. Electropherograms of 1 μ l of RNA extracted from HFDa, HFDa-P40, HFDa-P200 and HFDa-SN200 were determined using small RNA Chip Supplemental Figure S3. Isolated RNA profiles of triplicate extraction using mirVanaTM extraction Kit. Electropherograms of 1 μl of RNA extracted from HFDa, HFDA-P40, HFDa-P200 and HFDa-SN200 were determined using small RNA Chip | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | |---|---|--------------------------|--------------------------|-------------------------------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|---|--| | Α | Blank HFDa | | | CD81 HFDa | | | | CD9 HFD _a | | | CD81 HFDa | | | | В | Blank HFD _a P40 | | | CD81 HFD _a P40 | | | CD9 HFD _a P40 | | | CI | CD81 HFD _a P40 | | | | С | Blank HFD _a P200 | | | CD 81HFD _a P200 | | | CD9 HFD _a P200 | | | CE | CD 81HFD _a P200 | | | | D | Blank HFDa SN200 | | | CD81 HFD _a SN200 | | | CD9 HFD _a SN200 | | | CD | CD81 HFD _a SN200 | | | | Ε | CD63 HFDa | | | CD9 HFD _a | | | CD63 HFDa | | | | CD9 HFD _a | | | | F | CD63 HFDa P40 | | | CD9 HFD _a P40 | | | CD63 HFDa P40 | | | С | CD9 HFD _a P40 | | | | G | CD63 HFDa P200 | | | CD9 HFD _a P200 | | | CD63 HFDa P200 | | | CI | CD9 HFD _a P200 | | | | н | CD63 HFDa SN200 | | | CD9 HFD _a SN200 | | | CD63 HFDa SN200 | | | CD | CD9 HFD _a SN200 | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | | ID 107
Circle
6.74 | ID:109
Circle
7.76 | D:110
Circle
8.61 | ID 126
Circle
89.62 | ID:127
Circle
122.69 | D 128
Circle
134.06 | Crcle
232.34 | ID:154
Circle
230.13 | ID:155
Circle
227.90 | ID:177
Circle
143.52 | D:178
Circle
137.97 | ID:179
Circle
135.66 | | | Α | D. #1
Circle | D:#2
Gircle | O #13 | 89-92 | (B) | (a) | 1.0.22 | 160:17 | 154-86 | 90-18 | | 102:55 | | | В | O U4
Circle
18-25 | D U5
Circle
99Z | O 148
Circle | 129-55 | | | | | 240-90 | | | | | | С | 0 147
Sircle
11 392 | 0.148
Circle
10:29 | 0.149
0.150
1.157 | | 40.50 | | | | 188-88 | 372 | | 32 | | | D | () 190
inche
78-17 | Grute
Bit 05 | 0 122
Circle
80:88 | (1 H)
(2 C) (1 H)
(2 C) (1 H) | (2 # 2
Sircle
224 80 | 23 0 P | *** | | 274-11 | を できる | O 742
irosa
76 34 | 0.383
Circle
74:84 | | | Е | 25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55 | 0 Ha | 1135
Crole
56-12 | 1414 | 159,72 | 161:87 | 167-59 | 190-63 | 160.64 | 4621 | | () () () () () () () () () () | | | F | 0 243
70 50 | (A) | 0.316
Circle
85.48 | 220-21 | 228-58 | 227-22 | 138-84 | 187-09 | 186-90 | D 201
irtle
84 27 | | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | | | G | | | Strole
16-02 | 1980 | 175-02 | | | | | | | | | | Н | (·) | \odot | \odot | 0 | • | 0 | 0 | \odot | • | • | • | (E) | | Supplemental Figure S4: Fluorophore-linked immunoasorbent assay (FLISA). Ten μg of protein vesicles immobilized FLISA per each fraction obtained from the differential centrifugation protocol were used to coat the well. A) CD9 (green R & D antibody, blue Merck Millipore antibody, dark red HansaBioMed antibody); B) CD81; (green R & D antibody, red HansaBioMed antibody) Supplemental Figure S5: Ponceau staining and immunoblots detection for the relarive quantification of vesicle markers CD9 and Rab5 in HFDa and differential centrifugation pellets and supernatant. Gel loading was based on the Bradford assay (10μg of protein per lane). Lane 1 HFDa, Lane 2 HFDa-P40,000 g Lane 3 HFDa-P200,000 g, Lane 4 HFDa-SN200,000 g. Samples were denaturated Samples were denaturated without any DTT. St – molecular weight markers (LI-COR Biosciences) are expressed in kiloDalton. SN-Supernatant; P-Pellet. CD9¹ Mouse anti CD9 R & D System; CD9² Mouse anti CD9 Merck Millipore; CD9³ Mouse anti CD9 HansaBioMed; Rab5 Rabbit anti Ras-relted protein Rab5 HansaBioMed; Supplemental Figure S6: Ponceau staining and immunoblots detection for the relarive quantification of vesicle markers TSG101 and CD63 in HFDa and differential centrifugation pellets and supernatant. Gel loading was based on the Bradford assay (10μg of protein per lane). Lane 1 HFDa, Lane 2 HFDa-P40,000 g Lane 3 HFDa-P200,000 g, Lane 4 HFDa-SN200,000 g. Samples were denaturated without any DTT for CD63 while 50 mM DTT was added to denaturation buffer for TSG101 St: molecular weight markers (LI-COR Biosciences) are expressed in kilo Dalton. SN-Supernatant; P-Pellet R reducing (+DTT), NR nonreducing, (-DTT),. CD63^{1R} and CD63^{1NR} Mouse anti CD63 R & D System; CD63² Mouse anti CD63 HansaBioMed; TSG101 Rabbit anti tumour susceptibility gene 101Sigma Aldrich Supplemental Figure 7: Ponceau staining and immunoblots detection for the relarive quantification of vesicle markers CD81, Flotilin 1 and Alix in HFDa and differential centrifugation pellets and supernatant. Gel loading was based on the Bradford assay (10 µg of protein per lane). Lane 1 HFDa, Lane 2 HFDa-P40,000 g Lane 3 HFDa-P200,000 g, Lane 4 HFDa-SN200,000g. Samples were denaturated without any DTT for the detection of CD81 and FLOT 1 while 50 mM DTT was added to denaturation buffer for ALIX. St: molecular weight markers (LI-COR Biosciences) are expressed in kiloDalton. SN-Supernatant; P-Pellet R. CD81¹ Mouse anti CD81 R & D System; CD81² Mouse anti CD81 HansaBioMed; FLOT 1 Rabbit anti HansaBioMed, ALIX mouse anti anti-programmed cell death interacting protein Thermo Scientific Supplemental Figure 8: Particle count rate of particle standard, HFDa and differential centrifugation pellets and supernatant. Particle count-plot illustrates the linearity of the particle detection and count. When extended interruptions and fluctuations in the rate of particle detection occurred the measure was stopped and restarted from the beginning as soon the baseline stabilised again and count ratio resumed